ERUPTION OF DECIDUOUS TEETH IN AMERICAN INDIAN CHILDREN: A HISTORICAL COMPARISON

KATHERINE W. O. KRAMER, DEBORAH V. DAWSON, JOHN J. WARREN, KATHY PHIPPS, DELORES E. STARR, TERESA A. MARSHALL, DAVID R. DRAKE

> Katie Kramer MA, MA, PhD Dows Institute for Dental Research, University of Iowa

Challenges in the study of deciduous tooth eruption

Often not the primary focus of research

- Studies frequently start after tooth eruption begins
 Early Childhood Caries how early?
- Of interest because of the possibility that longer exposure may lead to greater levels of decay in young children.

Sample population

Northern Plains tribe

- □ 228 children from eligible 239
- Hygienist and interviewer visited families at 4 month intervals after baseline:

1 month	(mean =	0.93, SD = 0.81)
4 months	(mean =	3.88, SD = 0.58)
8 months	(mean =	7.85, SD = 0.63)
12 months	(mean = 7)	11.64, SD = 0.40)
16 months	(mean =	15.42, SD = 0.40)

Measuring eruption: 3 common approaches

Age at first tooth

Counts of teeth at different time points (or ages)

Patterns of tooth eruption

Measurement considerations

Current study design

Longitudinal follow-up

Eruption documented by trained hygienists

Visits at four-month intervals

Data collected as status at time of visit: exact times of tooth eruption not recorded

Missed visits = missing data

Timing of 1st tooth eruption

1 st tooth erupted before	frequency	percent	cumulative percent
1 month	4	1.75	1.75
4 months	33	14.47	16.22
8 months	163	71.49	87.71
12 months	27	11.84	99.55
16 months	1	0.45	100.00

Historical comparison of timing of first tooth eruption

Numbers of teeth in current study

Number of teeth at each of 5 visits

	Ν	mean	SD	median	25 th , 75 th	min, max
1 month	228	0.03	0.24	0	0, 0	0, 2
4 months	227	0.30	0.70	0	0, 0	0, 3
8 months	228	3.56	2.50	2	2, 6	0, 8
12 months	227	7.73	2.36	8	7,8	0, 16
16 months	224	12.46	3.41	12	10, 16	2, 20

Average number of teeth at 12 months – *American Indian mean significantly greater (p < 0.001, Student's T-test) than the mean in each of the other populations.

	AI	W ('42)	W ('42)	AA ('57)	W ('57)	PNG ('64)	G ('68)	S ('76)	UK ('87)	F ('00)	B ('07)
Ν	227	239	268	530	124	76	86	205	239	129	359
mean	7.7*	6.1	5.8	6.0	6.7	5.2	4.5	6.1	6.2	6.1	5.5
SD	2.4	2.2	2.1	2.7	2.3	0.3	2.5	2.2	2.5	2.4	2.5

Comparing Patterns of Eruption: 1 or 3 months

Light blue	>0-25% have teeth
Slate blue	>25-50% have teeth

Medium blue >50-75% have teeth Dark blue >75-100% have teeth

Comparing Patterns of Eruption: 4 or 6 months

Light blue	>0-25% have teeth
Slate blue	>25-50% have teeth

Medium blue

Dark blue

>50-75% have teeth

>75-100% have teeth

Comparing Patterns of Eruption: 8 or 9 months

Light blue	>0-25% have teeth
Slate blue	>25-50% have teeth

Medium blue >50-75% have teeth Dark blue >75-100% have teeth

Comparing Patterns of Eruption: 12 months

Ligł

Slat

nt blue	>0-25% have teeth
te blue	>25-50% have teeth

Medium blue

Dark blue

>50-75% have teeth

>75-100% have teeth

Comparing Patterns of Eruption: 16 or 18 months

Light

Slate

blue	>0-25% have teeth
blue	>25-50% have teeth

Medium blue

Dark blue

>50-75% have teeth

>75-100% have teeth

Conclusions

- These comparisons suggest that the time to first tooth eruption is earlier in this American Indian population.
- Comparisons with available data demonstrated that the mean number of teeth erupted at 12 months in this population was greater than in 10 other populations.
- Patterns of tooth eruption appeared to differ in this population, notably with respect to earlier timing and canine eruption.
- Hypothesis for future investigation: Is greater exposure (i.e. early eruption) associated with increased risk of early childhood caries?

References

- 1. Ferguson AD, Scott RB, Bakwin H. (1957). Growth and development of Negro infants: VIII. Comparison of the deciduous dentition in Negro and white infants (A preliminary study). The Journal of Pediatrics, 50:327-331.
- 2. Taranger J, Lichtenstein H, Svennberg-Redegren I. (1976). III. Dental development from birth to 16 years. Acta Paediatrica Scandinavica, 65:83-97.
- 3. Doering CR, Allen MF. (1942). Data on eruption and caries of the deciduous teeth. Child Development, 13:113-29.
- 4. Lawoyin TO, Lawoyin DO, Lawoyin JO. (1996). Epidemiological study of some factors related to deciduous tooth eruption. African Dental Journal, 10:19-23
- 5. Khan M, Curlin GT. (1978). Development of milk teeth in rural Meheran children in Bangladesh. Icddrb.org.
- . Robinow M, Richards TW, Anderson M. (1942). The eruption of deciduous teeth. Growth, 6:127-133.
- z. Bailey KV. (1964). Dental development in New Guinean infants. Tropical Pediatrics, 64:97-100.
- 8. McGregor IA, Thomson AM, Billewicz WZ. (1968). The development of primary teeth in children from a group of Gambian villages, and critical examination of its use for estimating age. Br. J. Nutr., 22:307-314.
- Ounsted M, Moar V, Scott A. (1987). A longitudinal study of tooth emergence and somatic growth in 697 children from birth to three years. Archs oral Biol., 32:787-91.
- 10. Nystrom M, Peck L, Kleemola-Kujala E, Evalahti M, Kataja M. (2000). Age estimation in small children: reference values based on counts of deciduous teeth in Finns. Forensic Science International, 110:179-188.
- 11. Bastos JL, Peres MA, Peres KG, Barros AJD. (2007). Infant growth, development and tooth emergence patterns: A longitudinal study from birth to 6 years of age. Archives of Oral Biology, 52:598-606.
- 12. Friedlaender JS, Ballit HL. (1969). Eruption times of the deciduous and permanent teeth of natives on Bougainville Island, territory of New Guinea: A study of racial variation. Human Biology, 41:51-65.
- 13. Yun DJ. (1957). Eruption of primary teeth in Korean rural children. American Journal of Physical Anthropology, 15:261-8.
- 14. Choi N-K, Yang K-H. (2001). A study on the eruption timing of primary teeth in Korean children. Journal of Dentistry for Children, 69:244-9.
- 15. <u>http://www.graphpad.com/quickcalcs/ttest2.cfm</u>