Clinical research for evidence-based care

Combining multiple data sources

Data collection in clinical practice

Identification of individuals

Socioeconomic impact

Controlled vocabularies

Workflow integration

Biometrics
Collection of Longitudinal Research Data Using Biometrics

Patricia Corby, DDS
Center for Biomedical Informatics
Department of Dental Public Health
University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA

May 3, 2005
Informatics and Public Health Symposium
American Association of Public Health Dentistry
Outline

- Identification of individuals
- Overview of “BIOMETRICS”
- Rationale for the application of iris-based biometrics in a twins study
- Methods: Application of an iris-based biometric system for participant identification in a research study
- Evaluation of the biometric system
- Effectiveness and shortcomings of biometrics
Identification of individuals

- Research practice often requires the acquisition of data on individual participants.

- Participants might have to be identified and examined several times during the study.

- There are instances where commonly accepted participant identifiers in research studies are either impractical or impossible.
Identification of individuals

Use of official identification is either absent or uncommon: conducting studies in a foreign country

Longitudinal epidemiological and genetic studies, clinical trials, and multi-center collaborative studies

Identical twins: common identifiers either do not exist or do not sufficiently discriminate between study participants
Overview of Biometrics

- Biometrics is the science of measuring physical or anatomical characteristics of individuals.

- It performs automatic identification of a person based on his/her physiological characteristics.

- Common biometric approaches include the recognition of fingerprints, hand or palm geometry, the retina, the iris, or facial characteristics.

- It is also used as a collective term for technology that performs such measurements, and it is most commonly used in computer security applications.
Overview of Biometrics: Biometric system

- Includes all of the hardware, associated software and interconnecting infrastructure to enable end to end biometric process.

- Any situation where we would like to verify an individual’s identity in respect to a translation may be a candidate for biometric.

- Is not the answer in some cases.
Overview of Biometrics: The iris

- The iris is a protected internal organ (although externally visible) whose random texture is stable throughout life.

- The iris begins to form in the third month of gestation, and the iris patterns are completed by the eighth month, although pigment accretion can continue during the first post-natal year.

- The iris is immune to influences from the environment with the exception of light, which causes the pupillary reflex.
Rationale for the application of iris-based biometrics in a twins study

Twins Research for Genetics Epidemiology
Rationale for the application of iris-based biometrics in a twins study

- It is very difficult to distinguish identical twins and parents cannot tell them apart for many months and a few continue to confuse them for years.

- In our previous studies, during the process of data collection and assessment of the children, it became apparent that misidentification of identical twins had the potential to jeopardize data quality.

- Problematic for investigators and twins during data collection.
Rationale for the application of iris-based biometrics in a twins study

Although identical twins share all genotypic features such as their entire DNA sequence, their irises are unique even between left and right eye.
Methods: System implementation

- Research and biometric data were collected on 4 laptops that shared a common database through a local Ethernet network.
- All laptops had a camera connected to capture iris images.
- The images of both eyes were captured for enrollment.
Methods:
Enrollment/Recognition Stations

- PrivateID® Image Capture Software capture both the iris and a face image
- PrivateID® Enroll-Recognition Application performs both enrollment and recognition
- Users provide biometric data
- Demographic Database/Personal identification cards were created
Methods: KnoWho authentication server

- Received images from the “client”, decrypted and unpacked them, and used them to generate a standard IrisCode template.
- Provides feedback on the quality of each captured image on-screen.
- An enrollment based on an unacceptable image is never saved by the system.
Methods: The iris enrollment process

1. Acquisition of a high-resolution image of the eye, illuminated with infrared light.

2. The technology maps the details of the iris and converts them into a an IrisCode template.

3. This 512-byte template is stored for subsequent comparisons.

4. The iris template is added to the enrollment database, along with associated identity information.
Methods: The iris identification process

1. The user provides biometric data

2. A new template is generated

3. The new iris template is then compared to one or more templates in the system
Evaluation of the biometric system

Baseline enrollment
Evaluation of the biometric system: longitudinal analysis

- 646 children seen at baseline

- The biometric system successfully identified 491 children with acceptable enrollment at baseline

- 77 of the 155 children who failed to enroll at baseline were successfully re-enrolled during the second appointment

- Two participants enrolled at baseline could not be identified successfully due to marginal images captured from both irises during the initial enrollment
Shortcomings of the iris-based biometric system

- The system failed to enroll a total of 184 (15%) participants, i.e. 155 children and 29 adults.

- Problematic in populations of very young children (fail to enroll 24%), predominantly because of usability problems and lack of cooperation by young children.

- Some participants could not open their eyes wide enough and thus the camera could not capture complete images of their irises.
Effectiveness of the iris-based biometric system

- Outstanding performance during the process of recognition avoiding misidentification with identical twins

- In the longitudinal analysis, the system proved to be a reliable identification tool

- Biometrics can be a valuable aid to ensure correct matching of research data to individuals, and therefore it may potentially elevate research data quality
Effectiveness of the iris-based biometric system

- Longitudinal epidemiological and genetic studies, clinical trials, and multi-center collaborative studies where accurate identification of subjects over time can be difficult or the subject may be young or hence an unreliable source of identification information.

- Biometrics can automate the process of subject identification thereby reducing the need to depend on subject recall during repeated visits thus helping to reduce misclassification errors or missing data.
Thank you!